On fractional semidiscrete Dirac operators of Lévy–Leblond type

نویسندگان

چکیده

In this paper, we introduce a wide class of space-fractional and time-fractional semidiscrete Dirac operators Lévy–Leblond type on the space-time lattice h Z n × [ 0 , ∞ ) $h{\mathbb {Z}}^n\times [0,\infty )$ ( > $h>0$ ), resembling to fractional counterparts so-called parabolic operators. The methods adopted here are fairly operational, relying mostly algebraic manipulations involving Clifford algebras, discrete Fourier analysis techniques as well standard properties analytic semigroup exp − t e i θ Δ α ≥ $\left\lbrace \exp (-te^{i\theta }(-\Delta _h)^{\alpha })\right\rbrace _{t\ge 0}$ carrying parameter constraints < ≤ 1 $0<\alpha \le 1$ | π 2 $|\theta |\le \frac{\alpha \pi }{2}$ . results obtained involve study Cauchy problems

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Collapsing and Dirac-type Operators

We analyze the limit of the spectrum of a geometric Dirac-type operator under a collapse with bounded diameter and bounded sectional curvature. In the case of a smooth limit space B, we show that the limit of the spectrum is given by the spectrum of a certain first-order differential operator on B, which can be constructed using superconnections. In the case of a general limit space X , we expr...

متن کامل

Dirac Operators on 4-manifolds

Dirac operators are important geometric operators on a manifold. The Dirac operator DA on the four dimensional Euclidean space M = R is the order one differential operator whose square DA ◦ DA is the Euclidean Laplacian − ∑4 i=1 ∂ψ ∂xi . However, this is not possible unless we allow coefficients for this linear operator to be matrix-valued. Let M = R be the four dimensional Euclidean space with...

متن کامل

Dirac operators on Lagrangian submanifolds

We study a natural Dirac operator on a Lagrangian submanifold of a Kähler manifold. We first show that its square coincides with the Hodge de Rham Laplacian provided the complex structure identifies the Spin structures of the tangent and normal bundles of the submanifold. We then give extrinsic estimates for the eigenvalues of that operator and discuss some examples. Mathematics Subject Classif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Nachrichten

سال: 2023

ISSN: ['1522-2616', '0025-584X']

DOI: https://doi.org/10.1002/mana.202100234